Ribbon Schur operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribbon Schur operators

A new combinatorial approach to the ribbon tableaux generating functions and q-Littlewood Richardson coefficients of Lascoux, Leclerc and Thibon [10] is suggested. We define operators which add ribbons to partitions and following Fomin and Greene [4] study non-commutative symmetric functions in these operators. This allows us to give combinatorial interpretations for some (skew) q-Littlewood Ri...

متن کامل

Positivity results on ribbon Schur function differences

There is considerable current interest in determining when the difference of two skew Schur functions is Schur positive. While the general solution for ribbon Schur functions seems out of reach at present, we determine necessary and sufficient conditions for multiplicity-free ribbons, i.e. those whose expansion as a linear combination of Schur functions has all coefficients either zero or one. ...

متن کامل

Schur Operators and Knuth Correspondences

The paper presents a general combinatorial approach to the Schur functions and their modiications, respective generalized Cauchy identities, and bijective Knuth-type correspondences between matrices and pairs of tableaux. All of these appear whenever one has a pair of graphs with the same vertices such that the linear operators associated with these graphs satisfy a certain type of commutation ...

متن کامل

Composition of Transpositions and Equality of Ribbon Schur Q-Functions

We introduce a new operation on skew diagrams called composition of transpositions, and use it and a Jacobi-Trudi style formula to derive equalities on skew Schur Q-functions whose indexing shifted skew diagram is an ordinary skew diagram. When this skew diagram is a ribbon, we conjecture necessary and sufficient conditions for equality of ribbon Schur Q-functions. Moreover, we determine all re...

متن کامل

Ribbon Operators and Hall-Littlewood Symmetric Functions

Abstract. Given a partition λ = (λ1, λ2, . . . λk), let λ rc = (λ2 − 1, λ3 − 1, . . . λk − 1). It is easily seen that the diagram λ/λ is connected and has no 2 × 2 subdiagrams which we shall refer to as a ribbon. To each ribbon R, we associate a symmetric function operator S. We may define the major index of a ribbon maj(R) to be the major index of any permutation that fits the ribbon. This pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2008

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2006.01.016